metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(salicylhydrazide- $\kappa^2 N$,O)sulfatozinc(II) monohvdrate

Wei Luo,^a Xiang-Gao Meng,^b Xiong Li,^a Gong-Zhen Cheng^a* and Zhen-Ping Ji^a

^aCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072. People's Republic of China, and ^bCollege of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei 430074, People's Republic of China

Correspondence e-mail: gzcheng@chem.whu.edu.cn

Received 20 June 2007; accepted 30 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.048; wR factor = 0.101; data-toparameter ratio = 14.3.

The title complex, $[Zn(SO_4)(C_7H_8N_2O_2)_2]\cdot H_2O$, contains neutral molecules of a mononuclear Zn^{II} complex, in which the salicylhydrazide ligand is N,O-chelated to the Zn^{II} ion. The Zn^{II} ion is coordinated, in a tetragonal-pyramidal environment, by two O atoms and two N atoms from two salicylhydrazide ligands forming a basal plane, and one O atom from the sulfate anion occupying the apical position. The water molecule is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Tao et al. (2000).

Experimental

Crvstal data

[Zn(SO₄)(C₇H₈N₂O₂)₂]·H₂O $M_r = 483.75$ Triclinic, P1 a = 7.2028 (6) Å b = 8.8006 (7) Å c = 15.6983 (13) Å $\alpha = 101.930(1)^{\circ}$ $\beta = 95.491$ (2)

 $\gamma = 104.210 \ (1)^{\circ}$ $V = 932.50 (13) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 1.49 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.15 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: none 8372 measured reflections

Refinement

6

,

$R[F^2 > 2\sigma(F^2)] = 0.048$ wR(F^2) = 0.101	H atoms treated by a mixture of independent and constrained
S = 0.92	refinement $\Lambda_{0} = 0.5^{\circ} \circ \Lambda^{-3}$
278 parameters	$\Delta \rho_{\text{max}} = 0.38 \text{ e A}$ $\Delta \rho_{\text{min}} = -0.51 \text{ e Å}^{-3}$
6 restraints	

3978 independent reflections

ח

ם מ

 $R_{\rm int} = 0.078$

2757 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

וו			ם מ		ц
2	0	0	2 (<i>′ ′</i>	

$D=11\cdots A$	$D=\Pi$	11	$D \cdots A$	$D=11\cdots A$
$N1-H1A\cdots O2$	0.86	1.95	2.613 (2)	133
$N2 - H2A \cdots O7^{i}$	0.90	2.14	3.026 (3)	169
$N2-H2B\cdots O8^{ii}$	0.90	2.00	2.898 (3)	175
N3−H3 <i>B</i> ···O4	0.86	2.01	2.655 (2)	131
$N3-H3B\cdots O9'^{iii}$	0.86	2.54	3.085 (4)	122
$N3 - H3B \cdot \cdot \cdot O9^{iii}$	0.86	2.63	3.158 (6)	120
$N4 - H4B \cdot \cdot \cdot O6^{ii}$	0.90	2.33	3.053 (3)	137
$N4 - H4C \cdot \cdot \cdot O8^{i}$	0.90	2.24	2.817 (2)	121
$N4 - H4C \cdots O7$	0.90	2.49	3.056 (3)	121
$O2-H2C\cdots O6^{iv}$	0.82	1.79	2.606 (2)	177
$O4-H4D\cdots O5^{v}$	0.82	1.91	2.727 (2)	175
$O9' - H9A \cdots O7$	0.82(1)	2.02 (1)	2.833 (4)	173 (2)
$O9' - H9B \cdots O4$	0.82(1)	2.33 (1)	3.144 (4)	169 (2)
O9−H9C···O7	0.82(1)	2.36 (1)	2.912 (5)	125 (1)
$O9-H9C\cdots O2^{vi}$	0.82 (1)	2.61 (1)	3.333 (6)	147 (1)
$O9-H9D\cdots O9^{vii}$	0.82 (1)	1.39 (2)	2.130 (11)	147 (3)

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x + 1, y, z; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y + 1, z; (v) x, y - 1, z; (vi) x - 1, y - 1, z; (vii) -x - 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 20171035)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2063).

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.

Acta Cryst. (2007). E63, m2482 [doi:10.1107/S1600536807042614]

Bis(salicylhydrazide- $\kappa^2 N, O$)sulfatozinc(II) monohydrate

W. Luo, X.-G. Meng, X. Li, G.-Z. Cheng and Z.-P. Ji

Comment

The molecular self-assembly of supramolecular architectures has received much attention during recent decades (Tao *et al.*, 2000). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as on the influence of weaker non-covalent interactions, such as hydrogen bonds and π - π stacking interactions. In this paper, we report the synthesis and crystal structure of the title compound, (I), [ZnSO₄(C₇H₈N₂O₂)₂]·H₂O, (Fig.1) a novel Zn^{II} complex formed by the ligand salicylhydrazide. The Zn^{II} ion is situated in a tetragonal-pyramidal environment consisting of two O atoms and two N atoms from two ligands in the basal plane, and an O atom from the sulfate anion in the apical position. Intermolecular O—H…O hydrogen bonds (Table 1) result in a two-dimensional network.

Experimental

Salicylhydrazide (15.2 mg, 0.1 mmol) was dissolved in a mixed solvent (20 ml) of DMF and methanol (1:1), then $ZnSO_4$ ·7H₂O (28.7 mg, 0.1 mmol) was added, stired for 10 min and filtered. Colourless single crystals suitable for X-ray diffraction analysis were obtained by slow diffusion of the filtrate for one week,.

Refinement

Except the water H atoms, all the H atoms were located at the ideal positions with C–H = 0.93 Å (aromatic), N–H = 0.86 Å (imine) and 0.90 Å (amine), O–H = 0.82 Å(phenol); and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, $U_{iso}(H) = 1.2U_{eq}(N)$ for H atoms bonded to N atoms and $U_{iso}(H) = 1.2U_{eq}(O)$ for hydroxyl H atoms. The water H atoms were located from the difference maps and refined with the constraints of O–H = 0.82 (1) Å, H–H = 1.35 (1) Å, and the U_{iso} values of these two H atoms were set 1.5 times of U_{eq} value of water O9 atom. The water O atom was disordered over two positions with occupancies of 0.589 (3):0.411 (3).

Figures

Fig. 1. Molecular structure of (I), showing the atom-numbering scheme.

Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network.

Bis(salicylhydrazide- $\kappa^2 N$,O)sulfatozinc(II) monohydrate

Crystal data

$[Zn(SO_4)(C_7H_8N_2O_2)_2]\cdot H_2O$	Z = 2
$M_r = 483.75$	$F_{000} = 496$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.723 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.2028 (6) Å	Cell parameters from 2048 reflections
b = 8.8006 (7) Å	$\theta = 2.5 - 25.1^{\circ}$
c = 15.6983 (13) Å	$\mu = 1.49 \text{ mm}^{-1}$
$\alpha = 101.9300 \ (10)^{\circ}$	T = 293 (2) K
$\beta = 95.491 \ (2)^{\circ}$	Plate, colourless
$\gamma = 104.2100 \ (10)^{\circ}$	$0.20\times0.15\times0.08~mm$
$V = 932.50 (13) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2757 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.078$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.5^{\circ}$
0.3° wide ω exposures scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -11 \rightarrow 11$
8372 measured reflections	$l = -18 \rightarrow 19$
3978 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_0^2) + (0.0377P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.92	$(\Delta/\sigma)_{\rm max} = 0.012$
3978 reflections	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
278 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn1	0.13536 (4)	0.88473 (3)	0.314727 (19)	0.03306 (9)	
C1	0.3139 (4)	1.2506 (3)	0.18144 (15)	0.0286 (6)	
C2	0.4106 (4)	1.4158 (3)	0.20697 (16)	0.0298 (6)	
C3	0.4111 (4)	1.5095 (3)	0.14579 (17)	0.0436 (8)	
H3A	0.4734	1.6194	0.1627	0.052*	
C4	0.3203 (4)	1.4411 (3)	0.06052 (18)	0.0466 (8)	
H4A	0.3225	1.5050	0.0201	0.056*	
C5	0.2259 (4)	1.2786 (3)	0.03429 (18)	0.0452 (8)	
H5A	0.1641	1.2327	-0.0234	0.054*	
C6	0.2246 (4)	1.1852 (3)	0.09485 (16)	0.0374 (7)	
H6A	0.1621	1.0754	0.0771	0.045*	
C7	0.2938 (4)	1.1418 (3)	0.24223 (15)	0.0284 (6)	
C8	-0.1049 (4)	0.3849 (3)	0.21322 (16)	0.0293 (6)	
C9	-0.1469 (4)	0.2470 (3)	0.24732 (16)	0.0316 (7)	
C10	-0.2507 (4)	0.1002 (3)	0.19232 (18)	0.0404 (8)	
H10A	-0.2821	0.0095	0.2154	0.049*	
C11	-0.3077 (4)	0.0858 (3)	0.10502 (19)	0.0434 (8)	
H11A	-0.3756	-0.0142	0.0689	0.052*	
C12	-0.2645 (4)	0.2206 (3)	0.06998 (18)	0.0452 (8)	
H12A	-0.3025	0.2117	0.0104	0.054*	
C13	-0.1651 (4)	0.3667 (3)	0.12426 (17)	0.0386 (7)	
H13A	-0.1370	0.4569	0.1007	0.046*	
C14	0.0002 (4)	0.5478 (2)	0.26454 (15)	0.0281 (6)	
N1	0.3799 (3)	1.1983 (2)	0.32565 (12)	0.0316 (6)	
H1A	0.4540	1.2952	0.3437	0.038*	
N2	0.3466 (3)	1.0954 (2)	0.38360 (12)	0.0299 (5)	
H2A	0.3047	1.1433	0.4316	0.036*	
H2B	0.4567	1.0719	0.4011	0.036*	
N3	0.0868 (3)	0.5710(2)	0.34653 (13)	0.0361 (6)	
H3B	0.0820	0.4914	0.3709	0.043*	
N4	0.1867 (3)	0.7301 (2)	0.39233 (14)	0.0371 (6)	
H4B	0.3146	0.7397	0.4030	0.044*	
H4C	0.1446	0.7549	0.4442	0.044*	

01	0.1941 (3)	0.99810 (18)	0.21592 (10)	0.0369 (5)	
O2	0.5027 (3)	1.48017 (18)	0.29031 (11)	0.0441 (6)	
H2C	0.5256	1.5787	0.3009	0.066*	
O3	0.0069 (3)	0.66568 (18)	0.23094 (11)	0.0434 (5)	
O4	-0.0854 (3)	0.26218 (19)	0.33444 (11)	0.0471 (6)	
H4D	-0.0849	0.1733	0.3428	0.071*	
O5	-0.0905 (3)	0.95954 (19)	0.35224 (11)	0.0407 (5)	
O6	-0.4187 (3)	0.7940 (2)	0.33021 (12)	0.0438 (5)	
07	-0.1873 (3)	0.78945 (19)	0.45077 (11)	0.0414 (5)	
O8	-0.3047 (2)	1.02338 (19)	0.45151 (11)	0.0403 (5)	
S1	-0.25252 (9)	0.88909 (6)	0.39720 (4)	0.02728 (16)	
O9'	-0.2612 (6)	0.4713 (4)	0.4754 (2)	0.0685 (12)	0.589 (3)
H9A	-0.235 (3)	0.5609 (9)	0.4650 (14)	0.103*	0.589 (3)
H9B	-0.2009 (19)	0.4211 (16)	0.4438 (14)	0.103*	0.589 (3)
O9	-0.3556 (8)	0.4900 (6)	0.5003 (3)	0.0685 (12)	0.411 (3)
Н9С	-0.359 (3)	0.5274 (19)	0.4567 (8)	0.103*	0.411 (3)
H9D	-0.4656 (14)	0.478 (4)	0.5129 (13)	0.103*	0.411 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03925 (18)	0.01937 (13)	0.04079 (17)	0.00402 (12)	0.00967 (14)	0.01088 (12)
C1	0.0320 (14)	0.0254 (11)	0.0308 (13)	0.0077 (10)	0.0100 (11)	0.0096 (10)
C2	0.0326 (14)	0.0254 (11)	0.0325 (13)	0.0060 (10)	0.0080 (11)	0.0101 (10)
C3	0.0506 (18)	0.0314 (12)	0.0536 (16)	0.0083 (12)	0.0144 (14)	0.0211 (12)
C4	0.0535 (18)	0.0486 (14)	0.0452 (15)	0.0132 (13)	0.0067 (14)	0.0290 (12)
C5	0.0493 (17)	0.0499 (15)	0.0371 (15)	0.0132 (14)	0.0041 (14)	0.0131 (13)
C6	0.0407 (16)	0.0332 (12)	0.0384 (14)	0.0078 (12)	0.0085 (13)	0.0102 (11)
C7	0.0285 (13)	0.0235 (11)	0.0334 (13)	0.0058 (10)	0.0089 (11)	0.0072 (10)
C8	0.0269 (13)	0.0216 (11)	0.0383 (14)	0.0058 (10)	0.0042 (11)	0.0058 (10)
C9	0.0333 (14)	0.0225 (11)	0.0375 (14)	0.0072 (11)	0.0006 (12)	0.0064 (10)
C10	0.0390 (16)	0.0250 (12)	0.0528 (16)	0.0033 (12)	0.0002 (14)	0.0091 (12)
C11	0.0413 (16)	0.0254 (13)	0.0523 (17)	0.0062 (12)	-0.0048 (14)	-0.0063 (13)
C12	0.0490 (18)	0.0399 (14)	0.0398 (16)	0.0083 (14)	-0.0060 (14)	0.0045 (13)
C13	0.0451 (17)	0.0301 (12)	0.0384 (15)	0.0070 (12)	0.0000 (13)	0.0103 (11)
C14	0.0314 (13)	0.0191 (10)	0.0344 (13)	0.0061 (10)	0.0075 (11)	0.0076 (10)
N1	0.0387 (12)	0.0190 (9)	0.0330 (11)	-0.0013 (9)	0.0033 (10)	0.0094 (8)
N2	0.0347 (11)	0.0276 (9)	0.0311 (10)	0.0079 (9)	0.0082 (9)	0.0144 (8)
N3	0.0470 (13)	0.0181 (9)	0.0401 (12)	0.0059 (9)	-0.0039 (11)	0.0083 (9)
N4	0.0423 (13)	0.0186 (9)	0.0418 (12)	0.0058 (9)	-0.0080 (11)	-0.0020 (9)
01	0.0485 (11)	0.0223 (8)	0.0329 (9)	-0.0027 (8)	0.0042 (9)	0.0069 (7)
O2	0.0637 (13)	0.0206 (8)	0.0398 (10)	-0.0020 (9)	0.0017 (10)	0.0083 (8)
O3	0.0654 (13)	0.0218 (8)	0.0363 (10)	0.0002 (9)	-0.0027 (9)	0.0108 (7)
O4	0.0676 (13)	0.0212 (8)	0.0474 (11)	0.0032 (9)	-0.0051 (10)	0.0141 (8)
O5	0.0403 (10)	0.0380 (8)	0.0565 (10)	0.0153 (8)	0.0240 (9)	0.0259 (8)
O6	0.0394 (11)	0.0298 (9)	0.0507 (11)	0.0004 (8)	-0.0059 (9)	0.0009 (9)
O7	0.0475 (11)	0.0395 (8)	0.0477 (10)	0.0167 (8)	0.0143 (9)	0.0244 (8)
08	0.0418 (10)	0.0385 (9)	0.0399 (10)	0.0200 (8)	0.0024 (9)	-0.0013 (8)

S 1	0.0293 (3)	0.0204 (3)	0.0324 (3)	0.0048 (2)	0.0054 (3)	0.0090 (2)
O9'	0.089 (3)	0.0608 (14)	0.0756 (19)	0.0311 (19)	0.029 (2)	0.0403 (14)
09	0.089 (3)	0.0608 (14)	0.0756 (19)	0.0311 (19)	0.029 (2)	0.0403 (14)
Geometric pa	arameters (Å, °)					
Zn1—O5		1.9937 (19)	C11–	-H11A	0.9	9300
Zn1—O1		2.0343 (16)	C12-	-C13	1.3	367 (3)
Zn1—O3		2.0361 (15)	C12–	-H12A	0.9	9300
Zn1—N4		2.079 (2)	C13–	-H13A	0.9	9300
Zn1—N2		2.0962 (17)	C14-	03	1.2	250 (3)
C1—C6		1.386 (3)	C14-	-N3	1.3	328 (3)
C1—C2		1.403 (3)	N1—	N2	1.4	407 (2)
C1—C7		1.478 (3)	N1—	H1A	0.8	3600
C2—O2		1.348 (3)	N2—	H2A	0.9	000
C2—C3		1.389 (3)	N2—	H2B	0.9	9000
C3—C4		1.374 (3)	N3—	N4	1.4	409 (2)
С3—НЗА		0.9300	N3—	H3B	0.8	3600
C4—C5		1.380 (3)	N4—	H4B	0.9	9000
C4—H4A		0.9300	N4	H4C	0.9	9000
С5—С6		1.379 (4)	02—	H2C	0.8	3200
C5—H5A		0.9300	04—	H4D	0.8	3200
С6—Н6А		0.9300	05—	S1	1.4	928 (18)
C7—O1		1.252 (2)	06—	S1	1.4	634 (17)
C7—N1		1.331 (3)	07—	S1	1.4	588 (17)
C8—C13		1.386 (3)	O8—	S1	1.4	585 (17)
С8—С9		1.404 (3)	O9'—	-H9A	0.8	319 (9)
C8—C14		1.466 (3)	O9'—	-H9B	0.8	321 (9)
С9—О4		1.365 (3)	O9'—	-H9C	1.0)11 (18)
C9—C10		1.384 (3)	09—	H9A	1.1	91 (19)
C10-C11		1.363 (4)	09—	H9C	0.8	319 (9)
C10—H10A		0.9300	O9—	H9D	0.8	322 (9)
C11—C12		1.388 (4)				
05—Zn1—0	1	101.24 (7)	C13–	-C12-H12A	12	0.5
O5—Zn1—O	3	102.77 (8)	C11–	-C12—H12A	12	0.5
01—Zn1—O	3	93.86 (6)	C12–	-С13—С8	12	2.3 (2)
O5—Zn1—N	4	107.05 (8)	C12–	-C13-H13A	11	8.9
O1—Zn1—N	4	151.69 (9)	C8—	C13—H13A	11	8.9
O3—Zn1—N	4	78.90 (7)	03—	C14—N3	11	9.87 (19)
O5—Zn1—N	2	95.68 (7)	03—	C14—C8	11	9.7 (2)
O1—Zn1—N	2	79.12 (7)	N3—	C14—C8	12	0.5 (2)
O3—Zn1—N	2	161.25 (8)	C7—	N1—N2	11	8.25 (17)
N4—Zn1—N	2	99.01 (7)	C7—	N1—H1A	12	0.9
C6-C1-C2		118.6 (2)	N2—	N1—H1A	12	0.9
C6-C1-C7		117.3 (2)	N1—	N2—Zn1	10	7.10 (12)
C2—C1—C7		124.0 (2)	N1—	N2—H2A	11	0.3
O2—C2—C3		121.3 (2)	Zn1–	-N2—H2A	11	0.3
O2—C2—C1		119.2 (2)	N1—	N2—H2B	11	0.3
C3—C2—C1		119.5 (2)	Zn1–	-N2—H2B	11	0.3

C4—C3—C2	120.5 (2)	H2A—N2—H2B	108.6
С4—С3—НЗА	119.7	C14—N3—N4	117.91 (18)
С2—С3—НЗА	119.7	C14—N3—H3B	121.0
C3—C4—C5	120.7 (2)	N4—N3—H3B	121.0
C3—C4—H4A	119.7	N3—N4—Zn1	108.09 (14)
С5—С4—Н4А	119.7	N3—N4—H4B	110.1
C6—C5—C4	119.0 (2)	Zn1—N4—H4B	110.1
С6—С5—Н5А	120.5	N3—N4—H4C	110.1
С4—С5—Н5А	120.5	Zn1—N4—H4C	110.1
C5—C6—C1	121.7 (2)	H4B—N4—H4C	108.4
С5—С6—Н6А	119.1	C7—O1—Zn1	113.80 (15)
С1—С6—Н6А	119.1	C2—O2—H2C	109.5
O1—C7—N1	120.1 (2)	C14—O3—Zn1	114.63 (14)
O1—C7—C1	120.3 (2)	C9—O4—H4D	109.5
N1—C7—C1	119.53 (19)	S1—O5—Zn1	132.28 (10)
С13—С8—С9	118.0 (2)	O8—S1—O7	111.27 (10)
C13—C8—C14	117.1 (2)	O8—S1—O6	109.20 (11)
C9—C8—C14	124.9 (2)	O7—S1—O6	111.30 (10)
O4—C9—C10	121.8 (2)	O8—S1—O5	107.26 (10)
04—C9—C8	118.82 (19)	O7—S1—O5	108.94 (11)
C10—C9—C8	119.4 (2)	O6—S1—O5	108.75 (11)
C11—C10—C9	121.3 (2)	Н9А—О9'—Н9В	104.5 (15)
C11-C10-H10A	119.4	Н9А—О9'—Н9С	54.7 (17)
C9—C10—H10A	119.4	Н9В—О9'—Н9С	127.7 (18)
C10-C11-C12	120.0 (2)	Н9А—О9—Н9С	46.1 (16)
C10-C11-H11A	120.0	H9A—O9—H9D	146 (2)
C12—C11—H11A	120.0	H9C—O9—H9D	104.3 (15)
C13—C12—C11	119.0 (2)		
C6—C1—C2—O2	-178.1 (2)	C7—N1—N2—Zn1	-6.3 (3)
C7—C1—C2—O2	4.5 (4)	O5—Zn1—N2—N1	-91.44 (15)
C6—C1—C2—C3	1.3 (4)	O1—Zn1—N2—N1	8.95 (14)
C7—C1—C2—C3	-176.1 (2)	O3—Zn1—N2—N1	78.3 (3)
O2—C2—C3—C4	178.4 (3)	N4—Zn1—N2—N1	160.26 (15)
C1—C2—C3—C4	-1.0 (4)	O3—C14—N3—N4	-1.0 (4)
C2—C3—C4—C5	0.5 (5)	C8—C14—N3—N4	179.5 (2)
C3—C4—C5—C6	-0.3 (5)	C14—N3—N4—Zn1	6.2 (3)
C4—C5—C6—C1	0.6 (4)	O5—Zn1—N4—N3	93.69 (16)
C2-C1-C6-C5	-1.1 (4)	O1—Zn1—N4—N3	-83.7 (2)
C7—C1—C6—C5	176.4 (3)	O3—Zn1—N4—N3	-6.42 (15)
C6—C1—C7—O1	-2.4 (4)	N2—Zn1—N4—N3	-167.49 (16)
C2—C1—C7—O1	175.1 (2)	N1—C7—O1—Zn1	11.9 (3)
C6—C1—C7—N1	178.8 (2)	C1—C7—O1—Zn1	-166.91 (18)
C2—C1—C7—N1	-3.8 (4)	O5—Zn1—O1—C7	82.16 (18)
C13—C8—C9—O4	178.8 (2)	O3—Zn1—O1—C7	-173.99 (18)
C14—C8—C9—O4	-0.6 (4)	N4—Zn1—O1—C7	-100.4 (2)
C13—C8—C9—C10	-1.9 (4)	N2—Zn1—O1—C7	-11.53 (18)
C14—C8—C9—C10	178.7 (3)	N3—C14—O3—Zn1	-5.2 (3)
O4—C9—C10—C11	-178.6 (3)	C8—C14—O3—Zn1	174.31 (18)
C8—C9—C10—C11	2.1 (4)	O5—Zn1—O3—C14	-98.63 (19)

C9—C10—C11—C12	-1.0 (4)	O1—Zn1—O3—C14	158.93 (19)
C10-C11-C12-C13	-0.2 (4)	N4—Zn1—O3—C14	6.55 (19)
C11—C12—C13—C8	0.4 (4)	N2—Zn1—O3—C14	91.9 (3)
C9—C8—C13—C12	0.7 (4)	O1—Zn1—O5—S1	155.47 (13)
C14-C8-C13-C12	-179.9 (3)	O3—Zn1—O5—S1	58.85 (15)
C13—C8—C14—O3	10.4 (4)	N4—Zn1—O5—S1	-23.28 (16)
C9—C8—C14—O3	-170.2 (2)	N2—Zn1—O5—S1	-124.53 (14)
C13-C8-C14-N3	-170.1 (2)	Zn1—O5—S1—O8	147.72 (13)
C9—C8—C14—N3	9.3 (4)	Zn1—O5—S1—O7	27.17 (17)
O1—C7—N1—N2	-3.5 (4)	Zn1—O5—S1—O6	-94.30 (15)
C1—C7—N1—N2	175.4 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O2	0.86	1.95	2.613 (2)	133
N2—H2A···O7 ⁱ	0.90	2.14	3.026 (3)	169
N2—H2B···O8 ⁱⁱ	0.90	2.00	2.898 (3)	175
N3—H3B…O4	0.86	2.01	2.655 (2)	131
N3—H3B···O9 ^{,iii}	0.86	2.54	3.085 (4)	122
N3—H3B···O9 ⁱⁱⁱ	0.86	2.63	3.158 (6)	120
N4—H4B···O6 ⁱⁱ	0.90	2.33	3.053 (3)	137
N4—H4C···O8 ⁱ	0.90	2.24	2.817 (2)	121
N4—H4C···O7	0.90	2.49	3.056 (3)	121
O2—H2C···O6 ^{iv}	0.82	1.79	2.606 (2)	177
O4—H4D···O5 ^v	0.82	1.91	2.727 (2)	175
O9'—H9A…O7	0.819 (9)	2.018 (8)	2.833 (4)	173 (2)
O9'—H9B…O4	0.821 (9)	2.334 (11)	3.144 (4)	168.8 (18)
O9—H9C…O7	0.819 (9)	2.360 (14)	2.912 (5)	125.3 (13)
O9—H9C⋯O2 ^{vi}	0.819 (9)	2.614 (11)	3.333 (6)	147.3 (14)
O9—H9D···O9 ^{vii}	0.822 (9)	1.39 (2)	2.130 (11)	147 (3)
Summetry codes: (i) $-r - v + 2 - z + 1$; (ii) $r + 1 - v$	r: (iii) $-r - 1 + 1 - r + 1$	1: (iv) $r+1$ $v+1$ r' (v	(1) r (1) r (1) r (1) r	$y = 1 - \pi$; (yii) $- y = 1 - y = 1$

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*+1, *y*+1, *z*; (v) *x*, *y*-1, *z*; (vi) *x*-1, *y*-1, *z*; (vii) -*x*-1, -*y*+1, -*z*+1.

Fig. 1

